benefits of coupling belowground carbon dynamics to eddy-covariance measurements of ecosystem CO_2 exchange with the atmosphere

Adrien Finzi, Marc-Andre Giasson, Allison Gill, Rose Abramoff Department of Biology, Boston University, Boston MA 02215

White Paper: Recommendations for Belowground Carbon Data and Measurements for the AmeriFlux Network McFarlane et al. (2014)

"Integrating measurements of eddy covariance fluxes with belowground C will yield substantial improvements to process-level representations of the C cycle in ecosystem and Earth system models."

2 Examples:

- I. Site-scale analysis of phenology: above vs. belowground ecosystem respiration
- II. Global-scale analysis of C partitioning coefficients and "costs" of N and P uptake

Soil respiration in a northeastern US temperate forest: a 22-year synthesis Giasson et al (2013) Ecosphere

Harvard Forest EMS [shown] & HEM towers >100,000 obs. of soil respiration [Rs] 18-site years of eddy covariance data

Soil respiration in a northeastern US temperate forest: a 22-year synthesis Giasson et al (2013) Ecosphere

Peak in Reco 20-40 days **prior** to peak in soil respiration

Reco [gray] peaks before Rsoil [red]

Soil respiration in a northeastern US temperate forest: a 22-year synthesis Giasson et al (2013) Ecosphere

Aboveground respiration small fraction of and early contributor to total Reco

R_{aboveground} = Reco - Rsoil R_{aboveground} peaks before Rsoil [red] > max between bud break & full leaf out

Persistent snow — Soil temperature
Intermittent snow — Air temperature

- Bud break • R_e
- Full leaf out • R_s
- Leaf coloration • R_{sheet}

Belowground processes critical to understanding Reco / NEP

Rsoil is majority of Reco flux 64 ± 12% [range 50-90%]

Global-Scale Analysis of Belowground C Fluxes & Coupled Biogeochemical Cycles

Gill & Finzi (in prep.)

What fraction of GPP is allocated belowground? How does this flux relate to soil resource acquisition?

Number of independent observations; different studies measured different things

Biome	La Thuile GPP	Total Belowground Carbon Flux	Annual Net Nitrogen Mineralization	Hedley Fractionation Phosphorus Pools	Annual Precipitation
Tropical	8	20	15	45	9
Subtropical	8	2	23	9	9
Mediterranean	25	11	11	8	26
Temperate Grassland	21	7	30	40	25
Temperate Deciduous	23	24	59	17	30
Temperate Coniferous	9	33	49	8	9
Boreal	9	24	47	6	15
Total Studies	103	121	234	133	123

Global-Scale Analysis of Belowground C Fluxes & Coupled Biogeochemical Cycles

Gill & Finzi (in prep.)

What fraction of GPP is allocated belowground?

Lowest in Tropics, 30%

Boreal and Mediterranean Biomes, 60-70%

Partitioning coefficients for MODELS!

8-fold variation wed temp dec temp dec

Global-Scale Analysis of Belowground C Fluxes & Coupled Biogeochemical Cycles

Gill & Finzi (in prep.)

How does this flux relate to soil resource acquisition?

C investment belowground proportional to known biome-scale variations in N vs P limitation

High C partitioning coefficient and N "cost" in boreal biome suggests N limitation more significant constraint on GPP than P limitation in the tropics.

all biomes

Are above and belowground phenology in sync? A meta-analysis & hypothesis

Abramoff & Finzi (New Phytologist)

Take Away: root and shoot growth is asynchronus unlike what most models assume

- * reasonably widespread phenomenon
- * root and shoot phenology are NOT in sync [boreal & temperate forest, Mediterranean and subtropical studies]

- * Increasing offset due to climatic control over offset between peak
- * Boreal lab >> subtropical
- * Variability suggests endogenous controls more important